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Abstract

Policy gradient methods are wildly used today because of their versatility. The
method decouples the possibly unknown state transition function from the policy
parameterization and learning process. Inspired by the functional mirror ascent
framework of Vaswani et al. [2022] that generalizes many surrogate functions in
the reinforcement learning literature, we propose projected policy gradient and
natural policy gradient methods for log-linear parameterizations and analyze their
convergence rate in exact and stochastic gradient settings. The proposed methods
allows us to extend some of the convergence results presented for policy gradients
in a tabular setting to the log-linear setting. For the first time, we have shown for
the log-linear policy gradient method a convergence rate of O(

√
1/T + b) with

exact updates, and O( 3
√

1/T + b) with inexact updates. The proposed projected
NPG method has the usual linear convergence as in the tabular softmax settings
but the approximation error does not depend on the distribution mismatch or
concentrability coefficients. We also show a convergence rate for the projected
NPG method with inexact evaluation. Empirically, we perform experiments in the
exact gradient setting to validate our results of convergence rates.

1 Motivation

Policy gradient (PG) methods Williams [1992], Sutton et al. [1999] optimize a parameterized
policy with respect to the expected long-term cumulative reward using gradient descent. They are
an important class of reinforcement learning methods because of their versatility: (i) the policy
representation can be chosen to be useful for the task, (ii) it often has fewer parameters than value-
function approaches, (iii) they can be used either model-free Williams [1992], Liu et al. [2023] or
model-based Wang and Dietterich [2003], Deisenroth and Rasmussen [2011], Kurutach et al. [2018].
Model-free methods avoid explicitly estimating the transition probability distribution and the reward
function and are the methods with the most prominence in the policy gradient literature.

Many policy gradient methods enjoy good empirical performance but initially lacked strong theoretical
guarantees. More recently, theoretical support has been developed for many of these methods
under different settings Agarwal et al. [2021]. Convergence rates have been shown for a tabular
parameterization, where the space of states and actions is finite Xiao [2022], Mei et al. [2020]. For
continuous spaces or problems in which the sets of states and actions are large, function approximation
methods Sutton et al. [1999] are necessary. In this setting, convergence rates have been shown for
natural policy gradient updates using a log-linear approximation Agarwal et al. [2021], Yuan et al.
[2023].

Although the natural policy gradient (NPG) method enjoys faster convergence rates in general,
policy gradients (PG) still has advantages in stochastic settings and it is very commonly used in

* denotes equal contributions (alphabetical order)



practice. Thus, the importance of its analysis remains high. However, for the policy gradient method,
convergence rates have not been shown yet. Most recently, under strong assumptions on the features,
global convergence has been shown Mei et al. [2023].

Having guarantees of convergence allows us to understand existing methods and their flaws, derive
new solutions to address their issues, and more generally, guide future research. Some methods
can be inherently flawed or proven to be optimal, and as a result, they do not warrant any further
development, while others can be improved using the new understanding provided.

2 Problem Formulation

Consider infinite-horizon discounted Markov decision processes (MDP) defined as M =
(S,A,P, r, γ), where S,A ⊆ R are the state and action spaces respectively, P : S ×A → ∆(S) is
a transition probability function, r : S × A → R is a reward function, and γ ∈ [0, 1) is a discount
factor, where ∆(X ) is the probability simplex for an arbitrary set X . A policy π : S → ∆(A)
induces an occupancy measure over states given as:

dπ(s) ≜ Es0∼ρ

[ ∞∑
t=0

γt Eπ(·,st)
[
P[St = st|S0 = s0]

]]
, (1)

where ρ ∈ ∆(S) is a probability distribution over the initial states, and P[St = st|S0 = s0]
can be deduced by the iteration of P induced by π. We can extend this measure to actions with
µπ(s, a) ≜ dπ(s)π(a, s), which is known as the state-action occupancy measure. Furthermore,
we can define the value function as V π(ρ) = ⟨µπ, r⟩. Given ρ, there exists an optimal policy
π∗ ≜ argmaxπ∈∆(A) V

π(ρ) and a best feasible policy π̂ ≜ argmaxπ∈Π V π(ρ), where Π is a
set of feasible policies defined by the policy parameterization. In log-linear policy gradients, we
parameterize the policy with θ ∈ Rd. In this work, we pointedly choose to functionally represent
the policy as πθ(a, s) = ⟨ϕ(s, a), θ⟩, where for each state-action pair (s, a), there is a feature
mapping ϕ(s, a) ∈ Rd. In a direct representation, the policy probability distribution is defined as
pπθ (s) = πθ(·, s), whereas in the softmax representation, the functional representation are considered
logits to a softmax function, such that:

pπθ (s) =
exp(πθ(·, s))∑
a∈A exp(πθ(a, s))

. (2)

Different policy gradient methods can be derived from the mirror-ascent generalization, in which we
take a step in a dual space and then project to a feasible solution in the primal space. Updates for
parameters w at step t+ 1 are given as:

wt+1 = argmax
w∈W

[
⟨∇wJ(wt)|w⟩ −

1

ηt
Dψ(w,wt)

]
, (3)

where Dψ(·, ·) is a distance-like function using a strictly convex, differentiable distance measure
function, or mirror map ψ(·), ηt is the step size at update t, and J(w) is an objective function. By
setting Dψ as a quadratic approximation of the Kullback-Leibler (KL) divergence, one recovers
the natural policy gradient (NPG) method Kakade [2001], with updates of the form wt+1 = wt +
ηtFρ(wt)

†∇wJ(wt), where Fρ(θ)† is the Moore-Penrose psudoinverse of the Fisher information
matrix, used as a pre-conditioner to improve the policy gradient direction. If we set Dψ as the
squared Euclidean distance using the square norm as the mirror map, we obtain the projected policy
gradient (PPG) method Xiao [2022] with updates wt+1 = projW [wt + ηt∇wJ(wt)], whereW is
a constrained set of feasible solutions. If we remove the projection, we recover the vanilla policy
gradient method, with updates given as wt+1 = wt + ηt∇wJ(wt).
In many of the existing convergence rate analyses, two coefficient naturally arise:∥∥∥∥∥dπ

∗

ρ

dπρ

∥∥∥∥∥
∞

= max
s∈S

dπ
∗

ρ (s)

dπρ (s)
≤ νρ, and Es∼d∗ρ

[(
dπt
ρ (s)

dπ∗
ρ (s)

)2
]
≤ Cρ. (4)

The distribution mismatch coefficient νρ encapsulates the importance of initialization. If states that
produce high rewards have no much probability of being explored, the coefficient will be high.
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Table 1: Comparison of softmax policy gradient methods with theoretical guarantees.
Algorithm Parameterization Gradient Results

Mei et al. [2020] tabular exact achieved O(1/T ) convergence for PG

Mei et al. [2021] tabular
exact NPG converges with linear rate

inexact NPG may not converge, whereas PG converges in probability

Cen et al. [2022] tabular exact NPG with entropy regularization achieves linear convergence rate

Agarwal et al. [2021] linear inexact NPG converges to the neighbourhood of the optimal policy

Yuan et al. [2023] linear inexact NPG achieves linear convergence to the neighbourhood of the optimal policy

Ours linear
exact O(

√
1/T + b) convergence for PG and linear for NPG with unamplified bias

inexact O( 3
√

1/T + b) for PG and linear for NPG with unamplified bias

Similarly, if a low probability is placed on a state-action pair of the initial policy, the coefficient will
be high if the optimal policy has a high probability assigned to the same state-action pair. Another
term shown in convergence analyses is the concentrability coefficient Cρ Munos [2005]. It measures
how much ρ can get amplified in T steps compared to the reference distribution dπ

∗
. A finite

concentrability is a restriction placed by the MDP dynamics, while the mismatch ratio does not
require restrictions on the MDP dynamics Chen and Jiang [2019], Agarwal et al. [2021].

With the log-linear parameterization defined above, we design projected methods for policy gradients
and natural policy gradients and show that as we perform updates to the policy, we converge to the
optimal feasible solution π∗ at a rate of O(1/√T) in PG and at a linear rate in NPG, using exact
updates. In the NPG convergence result, the bias term is not amplified by the distribution mismatch
or concentrability coefficients.

3 Related Work

Table 1 lists the convergence rates proved in recent works under different settings using the softmax
functional representation. For policy gradients, the work of Mei et al. [2020] shows a rate of O(1/t)
for tabular softmax policies using exact gradients. Their analysis relies on three findings: that the
objective satisfies a smoothness constant of 5/2 for bounded rewards in [0, 1], that it meets the uniform
Łojasiewicz condition Lojasiewicz [1963], and that the minimum probability of an optimal action
during optimization can be bounded in terms of its initial value.

The subsequent work of Mei et al. [2021] extends the analysis to stochastic gradients. The study
concludes that in this setting, an uninformed algorithm such as the PG method converges to a globally
optimal policy with probability 1 but at a rate no better than O(1/t), and that methods with faster
convergence in the exact gradient setting, such as natural policy gradients (NPG), might fail to
converge in the stochastic setting with some positive probability.

The Q-NPG method is a variation of NPG with the main difference being the use of function
approximation for the Q-function instead of advantages. Agarwal et al. [2021] and Yuan et al. [2023]
established convergence to the neighbourhood of the optimal policy using the Q-NPG method with
linear parameterization in the stochastic setting. In their respective analyses, two error terms arise:
the excess risk and the approximation error. The excess risk is an upper bound on the objective
differences between an exact update and an estimated update. In stochastic settings, increasing the
number of samples used to estimate the updates reduces this error. The approximation error is an
upper bound of the objective differences between the optimal policy and the best feasible policy. In
Agarwal et al. [2021], we note that the approximation error scales with the distribution mismatch
coefficient. In cite Yuan et al. [2023], the approximation error scales with both the distribution
mismatch and concentrability coefficients.

The work of Mei et al. [2023] shows asymptotic convergence for the PG method and a linear rate
of convergence for the NPG method in a bandit setting with linear approximation, under strong
assumptions on the features and rewards. A bandit setting corresponds to an infinite-horizon MDP
in which |S| = 1 and γ = 0. The PG result of Mei et al. [2023] assumes there exists a θ such
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that r′ = Φθ preserves the order of r such that for all i, j ∈ {|A|}, r(i) > r(j) if and only if
r′(i) > r′(j). This condition effectively enforces the optimal policy to be feasible. The work uses
the same definition of approximation error to analyze both the PG and NPG methods, which does
not seem justifiable since the PG method does not use the same regression problem to perform
updates. The work shows that an approximation error of zero does not necessarily result in global
convergence for the PG method, because it is less directly connected to the concept of approximation
error, compared to NPG. Interestingly, their examples show that a non-zero approximation error does
not necessarily prevent global convergence in both PG and NPG methods. Consequently, they reject
the concept of approximation error, which we believe important to analyze.

The work of Vaswani et al. [2022] introduces a framework that defines the sufficient statistics of a
policy as its functional representation, and their materialization as its parameterization. The same
policy can have multiple functional representations. The policy parameterization defines the set
of realizable policies that exits for a given parametric model and can be chosen independently of
its functional representation. The framework is based on functional mirror ascent and gives rise to
an entire family of surrogate functions for policy gradient methods. The work proposes surrogate
functions that enable policy improvement guarantees.

4 Main Results

Algorithm 1 Projected PG, Exact Evaluation

Input: Φ, π1, η, T .
Output: Policies pπt = softmax(πt).
while t = 0 to T − 1 do

Improvement: πt+1/2 = πt + ηt∇πV πt(ρ)

Projection: πt+1 = ϕ(ϕ⊤ϕ)−1ϕ⊤πt+1/2

end while

Algorithm 2 Projected NPG, Exact Evaluation

Input: Φ, π1, η, T .
Output: Policies pπt = softmax(πt).
for t = 0 to T − 1 do

Improvement: πt+1/2 = πt + ηt
Aπt

1−γ
Projection: πt+1 = ϕ(ϕ⊤ϕ)−1ϕ⊤πt+1/2

end for

4.1 Algorithms

Following Vaswani et al. [2021], we instantiate mirror-ascent to perform improvements in the
functional space and project to a feasible solution in the parameter space. Eq. (3) can be also
formulated in 2-steps. For the first step, or the functional improvement step, setting the value function
as the objective function such that J(π) = V π(ρ), we follow the standard PG and NPG updates. The
functional improvement for the policy gradients method follows the results of Sutton et al. [1999],
where the direction of improvement is given by:

[∇πJ(π)]s,a = dπ(s)π(s, a)
Aπ(s, a)

1− γ
, (5)

with Aπ(s, a) = Qπ(s, a)− V π(s) being the advantage function, where Qπ is the Q-function Sutton
et al. [1999]. Similarly, for the natural policy gradients method, following Khodadadian et al. [2022],
we have the following direction of functional improvement:

[F †
π∇πJ(π)]s,a =

Aπ(s, a)

1− γ
. (6)

The second step, the projection step, uses the squared norm as the mirror map, having the following
form:

πt+1 = argmin
π∈Π

∥∥π − πt+1/2

∥∥2
2
, (7)

where πt+1/2 is the result of the intermediate functional improvement. In the linear setting, this
projection step is equivalent to:

θt+1 = argmin
θ

∥∥ϕ θ − πt+1/2

∥∥2
2
, (8)

becoming an unconstrained optimization problem with a closed-form solution given by:

θt+1 = (ϕ⊤ϕ)−1ϕ⊤πt+1/2. (9)
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Algorithm 1 and Algorithm 2 describe the optimization procedure in detail for the projected PG and
projected NPG methods respectively. The functional update in the projected PG algorithm is given by
Eq. (5). A computational complexity analysis is deferred to Appendix D.

Noting that the gradients are taken with respect to the functional representation, established as the
logits, the linear approximation is effectively abstracted away and we recover the tabular setting,
which properties are well understood and useful in the following analyses. Namely, it has been
shown in Mei et al. [2020] that the tabular softmax parameterization satisfies the smoothness and
the non-uniform Łojasiewicz condition. Since the parameterization still restricts the set of feasible
policies, there exists an error

∣∣J(πt+1/2)− J(πt+1)
∣∣ ≤ bt, incurred when not being able to achieve

the optimal policy. We call bt the projection bias at iteration t and it is akin to the approximation
error introduced in some of the previous analyses discussed.

4.2 Convergence Rates

We show a convergence analysis for the proposed methods in both the exact evaluation setting and
the inexact evaluation setting. We defer the empirical evaluation of these methods under the exact
evaluation setting to Appendix C.

4.2.1 Projected PG with Exact Evaluation

Lemma 4.1 (Smoothness, Lemma 7 in Mei et al. [2020]). J(π) is 8/(1− γ)3-smooth.
Lemma 4.2 (Non-uniform Lojasiewicz, Lemma 8 in Mei et al. [2020]).∥∥∥∥∂J(π)∂θ

∥∥∥∥ ≥ mins p
π(a∗(s)|s)

√
S ·
∥∥∥dπ∗

ρ /dπρ

∥∥∥
∞

· [J(π∗)− J(π)] (10)

Theorem 4.3. (Projected PG) Assuming that the bias is bounded |J(πt+1)− J(πt+1/2)| < bt for all
t, after T rounds of the projected PG with ηt = 1

L , we have

min
t∈[T−1]

δ ≤

√√√√δ0 +
∑T−1
t=0 bt

µ2

2LT
, (11)

where µ = inft
mins p

πt (a∗(s)|s)
√
S·

∥∥∥dπ
∗

ρ /dπt
ρ

∥∥∥
∞

.

Proof. Using the L-smoothness of J in Lemma 4.1 and the improvement step in Algorithm 1 with
ηt =

1
L , we have

J(πt+1/2) ≥J(πt) +
〈
∇J(πt),

1

L
∇J(πt)

〉
− L

2

∥∥∥∥ 1L∇J(πt)
∥∥∥∥2 (12)

=J(πt) +
1

2L
∥∇J(πt)∥2 (13)

Therefore,
J(πt+1) ≥J(πt+1/2)− bt (14)

≥J(πt) +
1

2L
∥∇J(πt)∥2 − bt (15)

Using the Lojasiewicz condition in Lemma 4.2, we have

≥J(πt) +
µ2

2L
∥J(π∗)− J(πt)∥2 − bt, (16)

where µ = inft
mins p

πt (a∗(s)|s)
√
S·

∥∥∥dπ
∗

ρ /dπt
ρ

∥∥∥
∞

. Furthermore,

J(π∗)− J(πt+1) ≤ J(π∗)− J(πt)−
µ2

2L
∥J(π∗)− J(πt)∥2 + bt (17)

=⇒ δt+1 ≤ δt −
µ2

2L
δ2t + bt (18)

=⇒ µ2

2L
δ2t ≤ δt − δt+1 + bt (19)
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Summing up for T iterations and dividing both sides by T , we have

µ2

2L
min

t∈[T−1]
δ2t ≤

µ2

2LT

T−1∑
t=0

δ2t ≤
1

T
[δ0 − δT ] +

1

T

T−1∑
t=0

bt ≤
1

T
[δ0] +

1

T

T−1∑
t=0

bt (20)

=⇒ min
t∈[T−1]

δt ≤

√√√√δ0 +
∑T−1
t=0 bt

µ2

2LT
(21)

4.2.2 Projected PG with Inexact Evaluation

Theorem 4.4. Let {πt}t≥0 be generated by using Algorithm 3, i.e., for all t ≥ 0,
πt+1/2 = πt + η · ĝt (22)

πt+1 = ϕ(ϕ⊤ϕ)−1ϕ⊤πt+1/2, (23)
with learning rate

η =
(1− γ)4

4 · C
·
∥∥∥∥∂V πt(ρ)

∂π

∥∥∥∥
2

(24)

for all t ≥ 0, and

C :=

[
3 +

2 · (C∞ − (1− γ))
(1− γ) · γ

]
·
√
S, (25)

where C∞ := maxπ

∥∥∥dπρρ ∥∥∥∞ ≤ 1
mins ρ(s)

<∞. Denote C ′
∞ := maxπ

∥∥∥dπρρ ∥∥∥∞. We have

min
t∈[T−1]

E [V ∗(ρ)− V πt(ρ)] ≤
3

√√√√√√E [V ∗(ρ)− V π0(ρ)] +
∑T−1
t=0 E [bt]

(1−γ)7
8·C ·

∥∥∥∥dπ∗
ρ

ρ

∥∥∥∥−3

∞
· c
S·

√
S
· T

, (26)

where c > 0 is independent with T .

The proof is included in Appendix A.

4.2.3 Projected NPG with Exact Evaluation

Here, we analyze the convergence rate for the project linear NPG with exact policy evaluation. Mei
et al. has proven the Non-uniform Łojasiewicz inequality (Lemma 10) for natural policy gradient in
tabular softmax settings. Based on that, we can easily derive the following lemma for the improvement
step of the projected NPG.
Lemma 4.5 (Natural NŁInequality). Considering every improvement step of Algorithm 2, for all
s ∈ S, we have:

Js(πt+1/2)− Js(πt) ≥ C(πt) · (1− γ) ·

∥∥∥∥∥dπ
∗

ρ

ρ

∥∥∥∥∥
−1

∞

[Js(π
∗)− Js(πt)] , (27)

where C(πt) is given by

C(πt) := min
s∈S

[
1− 1

πt(s, āt(s)) · (exp(η ·∆t(s))− 1) + 1

]
∈ (0, 1), (28)

and āt(s) := argmaxa∈AQ
πt(s, a) and ∆t(s) := Qπt(s, āt(s))−maxa̸=āt(s){Qπt(s, a)}.

As RHS ≥ 0 in Eq. (27), we know that NPG in tabular softmax settings will result in monotonic
value improvement, meaning that Js(πt+1/2) ≥ Js(πt) for all t ≥ 1. We can further address the
monotonic improvement for the correspond Q-values:

Qπt+1/2(s, a)−Qπt(s, a) = γ
∑
s′∈S

P (s′|s, a) [Js(πt+1)− Js(πt)] ≥ 0. (29)

Therefore, we have Qπt+1/2(s, a) ≥ Qπt(s, a) for all t > 1. Using this, we present the theorem for
the convergence rate of the projected NPG as follows.
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Theorem 4.6. (Projected NPG) We define the step size as:

ηt ≥
1

ct
max
s∈S

{
min
pπ∈Πs

t

DΦ(p
π, pπt)

}
, (30)

where ct is a sequence of positive reals, Πst = {πs|πs = argmaxps∈∆(A)⟨Qπt(s, ·), ps⟩} is a set of
policies w.r.t Qπt(s, ·), and DΦ denotes the Bregman divergence under the mirror map Φ. Assuming
that the bias is bounded |J(πt+1)− J(πt+1/2)| < bt for all t, after T rounds of the projected NPG
with ηt, we have

∥J(π∗)− J(πT )∥∞ ≤ γ
T

[
∥J(π∗)− J(π0)∥∞ +

T∑
t=1

γ−t(ct + bt)

]
. (31)

Proof. As mentioned above, we already know that Qπt(s, ·) ≤ Qπt+1/2(s, ·) for the projected NPG.
Then, we have ⟨Qπt(s, ·), πst+1/2⟩ ≤ ⟨Q

πt+1/2(s, ·), πst+1/2⟩ = Js(πt+1/2). Using this, we have

⟨Qπt(s, ·), π∗s − πst+1/2⟩ ≥ ⟨Q
πt(s, ·), π∗s⟩ − Js(πt+1/2) (32)

≥ ⟨Qπt(s, ·)−Q∗(s, ·), π∗s⟩+ ⟨Q∗(s, ·), π∗s⟩ − Js(πt+1/2) (33)

≥ −∥Qπt(s, ·)−Q∗(s, ·)∥∞ + Js(π
∗)− Js(πt+1/2) (Hölder’s inequality)

(34)

Next, we upper bound ∥Qπt(s, ·)−Q∗(s, ·)∥∞.

Qπt(s, ·)−Q∗(s, ·) = γ
∑
s′∈S

P (s′|s, a)[Js′(πt)− Js′(π∗)] ≤ γ ∥J(πt)− J(π∗)∥∞ . (35)

Putting them together, we have

− γ ∥J(πt)− J(π∗)∥∞ + Js′(π
∗)− Js′(πt+1/2) (36)

≤ ⟨Qπt(s, ·), π∗s − πst+1/2⟩ ≤ Q
πt(s, ·), π̃s − πst+1/2⟩ (define π̃ as the greedy policy w.r.t Qπt(s, ·))

(37)

≤
DΦ(π̃

s, πst )−DΦ(π̃
s, πst+1/2)−DΦ(π

s
t+1/2, π

s
t )

ηt
(Three-Point Descent Lemma Xiao [2022])

(38)

≤ DΦ(π̃
s, πst )

ηt
≤ min
pπ∈Πs

t

DΦ(p
π, πst )

ηt
≤ ct. (definition of ηt)

(39)

From the above inequality, −γ ∥J(πt)− J(π∗)∥∞ + Js′(π
∗) − Js′(πt+1/2) ≤ ct. Combining the

bias bound, we have

−γ ∥J(πt)− J(π∗)∥∞ + Js′(π
∗)− Js′(πt+1) ≤ ct + Js′(πt+1/2)− Js′(πt+1) (40)

≤ ct + |Js′(πt+1/2)− Js′(πt+1)| (41)

≤ ct + bt (42)
=⇒ ∥J(π∗)− J(πt+1)∥∞ ≤ γ ∥J(πt)− J(π

∗)∥∞ + ct + bt (43)

Unravelling this recursion yields

∥J(π∗)− J(πT )∥∞ ≤ γ
T

[
∥J(π∗)− J(π0)∥∞ +

T∑
t=1

γ−t(ct + bt)

]
. (44)

This theorem states that the project linear NPG can approach the neighborhood of optimal policy
with a linear convergence rate. We can use the geometrically increasing step size by setting ct = γtc

for some constant c, then term γT
∑T
t=1 γ

−tct ≤ γTTc will diminish linearly. Moreover, we will be
able to limit the neighbourhood size to maxt bt/1−γ.
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4.2.4 Projected NPG with Inexact Evaluation

Here, we extend the convergence rate for the project linear NPG in the inexact settings. We assume
that we have a Q-estimator that is τ -accurate, i.e., for all π and s,

∥∥∥Qπ(s, ·)− Q̂π(s, ·)∥∥∥
∞
≤ τ . The

improvement step becomes πt+1/2 = πt + ηt
Âπt

1−γ , where Âπt is induced by Q̂πt and πt. We then
bound the inexact Q-values for NPG updates derived from Lemma A.5 in Johnson et al. [2023].

Lemma 4.7. Consider the policies produced by Algorithm 2, if
∥∥∥Qπ(s, ·)− Q̂π(s, ·)∥∥∥

∞
≤ τ for any

π and s, we have

Q̂πt+1/2(s, a) ≥ Q̂πt(s, a)− 2τγ

1− γ
. (45)

Based on that, we can introduce a convergence rate for inexact projected NPG that is similar to
Theorem 4.6.
Theorem 4.8. (Inexact Projected NPG) We define the step size as:

ηt ≥ max
s∈S

{
min
pπ∈Πs

t

DΦ(p
π, pπt)

γ2k+1

}
, (46)

where Πst = {πs|πs = argmaxps∈∆(A)⟨Qπt(s, ·), ps⟩} is a set of policies w.r.t Qπt(s, ·), and
DΦ denotes the Bregman divergence under the mirror map Φ. Assuming that the bias is bounded
|J(πt+1) − J(πt+1/2)| < bt, after T rounds of the projected linear NPG with ηt and τ -accurate
Q-estimates, we have:

∥J(π∗)− J(πT )∥∞ ≤ γ
T

(
∥J(π∗)− J(π0)∥∞ +

1

1− γ

)
+

4γτ

(1− γ)2
+

T−1∑
t=0

γtbt. (47)

The proof of this theorem can be found in Appendix B. This theorem shows that the projected linear
NPG can also converge to the neighborhood of the optimal policy in a linear rate. The neighbourhood
size depend on both the inexactness 4γτ/(1−γ)2 and the projection error

∑T−1
t=0 γtbt, which can be

bounded by 4γτ/(1−γ)2 + maxt bt/1−γ.

5 Conclusion and Future Work

In this work we designed a projected PG method and a projected NPG method for the linear
approximation setting. We analyzed their convergence by extending the results from the tabular policy
gradient methods. We achieved a convergence rate for policy gradients in a linear setting in both
exact and inexact settings for the first time. For the NPG method, we achieved a convergence rate in
which the bias is not amplified by the mismatch ratio or concentrability coefficient for the first time.
We performed an empirical evaluation in which we showed the performance of these methods in an
exact gradient setting and compared them to the non-projected PG and NPG methods. The results are
consistent with theoretical analysis. In future work, we hope to extend the empirical evaluation of
these methods to the inexact setting.
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A Proof of Theorem 4.4

Algorithm 3 Projected PG, Inexact Evaluation

Input: Φ, π1, η, T .
Output: Policies pπt = softmax(πt).
for t = 0 to T − 1 do

Sample at(s) ∼ pπt(·|s) for all s ∈ S.
Q̂πt(s, a)← I{at(s)=a}

pπt (a|s) ·Q
πt(s, a).

ĝt(s, ·)← 1
1−γ · d

πt
ρ (s) ·

[∑
a
∂pπt (a|s)
∂π(s,·) · Q̂

πt(s, a)
]
.

Improvement: πt+1/2 ← πt + η · ĝt.
Projection: πt+1 = ϕ(ϕ⊤ϕ)−1ϕ⊤πt+1/2

end for

Proof. This proof is mainly based on the proof of Theorem 13 of Mei et al. [2021]. First note that for
any π and ρ,

dπρ (s) = Es0∼ρ
[
dπρ (s)

]
(48)

= Es0∼ρ

[
(1− γ) ·

∞∑
t=0

γtPr(st = s|s0, π,P)

]
(49)

≥ Es0∼ρ [(1− γ) · Pr(s0 = s|s0)] (50)
= (1− γ) · ρ(s). (51)
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Next, according to [Mei et al., 2021, Lemma 20], we have,

V ∗(ρ)− V π(ρ) = 1

1− γ
∑
s

dπρ (s)
∑
a

(
pπ

∗
(a|s)− pπ(a|s)

)
·Q∗(s, a) (52)

=
1

1− γ
∑
s

dπρ (s)

dπρ (s)
· dπρ (s)

∑
a

(
pπ

∗
(a|s)− pπ(a|s)

)
·Q∗(s, a) (53)

≤ 1

1− γ
·
∥∥∥∥dπρdπρ

∥∥∥∥
∞

∑
s

dπρ (s)
∑
a

(
pπ

∗
(a|s)− pπ(a|s)

)
·Q∗(s, a)

(∑
a

(
pπ

∗
(a|s)− pπ(a|s)

)
·Q∗(s, a) ≥ 0

)
(54)

≤ 1

(1− γ)2
·
∥∥∥∥dπρρ

∥∥∥∥
∞

∑
s

dπρ (s)
∑
a

(
pπ

∗
(a|s)− pπ(a|s)

)
·Q∗(s, a)

(
by Equation 48 and min

s
ρ(s) > 0

)
(55)

≤ 1

(1− γ)2
· C ′

∞ ·
∑
s

dπρ (s)
∑
a

(
pπ

∗
(a|s)− pπ(a|s)

)
·Q∗(s, a) (56)

=
1

1− γ
· C ′

∞ · [V ∗(ρ)− V π(ρ)] . (by [Mei et al., 2021, Lemma 20]) (57)

Denote δ(πt) := V ∗(ρ)− V πt(ρ). Let We have, for all t ≥ 1,
δ(πt+1/2)− δ(πt) (58)

= −V πt+1/2(ρ) + V πt(ρ) +
〈∂V πt(ρ)

∂π
, πt+1/2 − πt

〉
−
〈∂V πt(ρ)

∂π
, πt+1/2 − πt

〉
(59)

≤ C ·
∥∥∥∥∂V πt(ρ)

∂π

∥∥∥∥
2

· ∥πt+1/2 − πt∥22 −
〈∂V πt(ρ)

∂π
, πt+1/2 − πt

〉
(by [Mei et al., 2021, Lemma 12])

(60)

= C · η2 ·
∥∥∥∥∂V πt(ρ)

∂π

∥∥∥∥
2

· ∥ĝt∥22 − η ·
〈∂V πt(ρ)

∂π
, ĝt

〉
. (using Eq. (22)) (61)

Since δ(πt)− δ(πt+1/2) = V πt+1/2(ρ)− V πt+1(ρ) ≤ bt, we have
δ(πt+1)− δ(πt) ≤δ(πt+1/2)− δ(πt) + bt (62)

≤C · η2 ·
∥∥∥∥∂V πt(ρ)

∂π

∥∥∥∥
2

· ∥ĝt∥22 − η ·
〈∂V πt(ρ)

∂π
, ĝt

〉
+ bt (63)

Next, taking expectation over the random sampling on Eq. (58), we have,

E [δ(πt+1)]− E [δ(πt)] ≤ C · η2 ·
∥∥∥∥∂V πt(ρ)

∂π

∥∥∥∥
2

· E
[
∥ĝt∥22

]
− η ·

〈∂V πt(ρ)

∂π
,E [ĝt]

〉
+ E [bt]

(64)

= C · η2 ·
∥∥∥∥∂V πt(ρ)

∂π

∥∥∥∥
2

· E
[
∥ĝt∥22

]
− η ·

∥∥∥∥∂V πt(ρ)

∂π

∥∥∥∥2
2

+ E [bt] (unbiased PG, by [Mei et al., 2021, Lemma 11])

(65)

≤ 2 · C
(1− γ)4

· η2 ·
∥∥∥∥∂V πt(ρ)

∂π

∥∥∥∥
2

− η ·
∥∥∥∥∂V πt(ρ)

∂π

∥∥∥∥2
2

+ E [bt] (bounded PG, by [Mei et al., 2021, Lemma 11])

(66)

= − (1− γ)4

8 · C
·
∥∥∥∥∂V πt(ρ)

∂π

∥∥∥∥3
2

+ E [bt] (by Eq. (24)) (67)

≤ − (1− γ)4

8 · C
· E
[
min
s
pπt(a∗(s)|s)3

]
· E
[
δ(πt)

3
]
·
∥∥∥∥dπ∗

ρ

dπt
ρ

∥∥∥∥−3

∞
· 1

S ·
√
S

+ E [bt] (by [Mei et al., 2021, Lemma 9])

(68)

≤ − (1− γ)4

8 · C
· (E [δ(πt)])

3 ·
∥∥∥∥dπ∗

ρ

dπt
ρ

∥∥∥∥−3

∞
· c

S ·
√
S

+ E [bt] , (by Jensen’s inequality)

(69)
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where

c := inf
t≥1

E
[
min
s
pπt(a∗(s)|s)3

]
(70)

≥ inf
t≥1

(
E
[
min
s
pπt(a∗(s)|s)

])3
(by Jensen’s inequality) (71)

> 0, (72)

and the last inequality is from [Mei et al., 2020, Lemma 9], since the expected iteration equals the
true gradient update, which converges to global optimal policy. According to Eq. (48), we have:

E [δ(πt+1)]− E [δ(πt)] ≤ −
(1− γ)7

8 · C
· (E [δ(πt)])

3 ·
∥∥∥∥dπ∗

ρ

ρ

∥∥∥∥−3

∞
· c

S ·
√
S

+ E [bt] . (73)

Denote δ̃(πt) := E [δ(πt)] and b̃t := E [bt]. We have:

(1− γ)7

8 · C
·
∥∥∥∥dπ∗

ρ

ρ

∥∥∥∥−3

∞
· c

S ·
√
S
· δ̃(πt)3 ≤ δ̃(πt)− δ̃(πt+1) + b̃t. (74)

Summing up for T iterations and dividing both sides by T , we have:

(1− γ)7

8 · C
·
∥∥∥∥dπ∗

ρ

ρ

∥∥∥∥−3

∞
· c

S ·
√
S
· min
t∈[T−1]

δ̃(πt)
3 ≤ 1

T
[δ̃(π0)− δ̃(πT )] +

1

T

T−1∑
t=0

b̃t (75)

≤ 1

T
[δ̃(π0)] +

1

T

T−1∑
t=0

b̃t. (76)

Therefore,

min
t∈[T−1]

δ̃(πt) ≤ 3

√√√√√√ δ̃(π0) +
∑T−1
t=0 b̃t

(1−γ)7
8·C ·

∥∥∥∥dπ∗
ρ

ρ

∥∥∥∥−3

∞
· c
S·

√
S
· T

(77)

=⇒ min
t∈[T−1]

E [V ∗(ρ)− V πt(ρ)] ≤
3

√√√√√√E [V ∗(ρ)− V π0(ρ)] +
∑T−1
t=0 E [bt]

(1−γ)7
8·C ·

∥∥∥∥dπ∗
ρ

ρ

∥∥∥∥−3

∞
· c
S·

√
S
· T

(78)

B Proof of Theorem 4.8

Here, we derive the convergence rate for the projected NPG with inexact policy evaluation, as stated
in Theorem 4.8.
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Proof. Based on Lemma 4.7, we have

⟨Q̂πt(s, ·), π∗s − πst+1/2⟩ (79)

=⟨Qπt(s, ·), π∗s − πst+1/2⟩+ ⟨Q̂
πt(s, ·)−Qπt(s, ·), π∗s − πst+1/2⟩ (80)

≥⟨Qπt(s, ·), π∗s⟩ − ⟨Qπt(s, ·), πst+1/2⟩ −
∥∥∥Q̂πt(s, ·)−Qπt(s, ·)

∥∥∥
∞

∥∥∥π∗s − πst+1/2

∥∥∥
1

(81)

≥⟨Qπt(s, ·), π∗s⟩ − ⟨Qπt(s, ·), πst+1/2⟩ −
2γτ

1− γ
− 2τ (82)

≥⟨Qπt(s, ·), π∗s⟩ − Js(πt+1/2)−
4γτ

1− γ
(83)

≥⟨Qπt(s, ·), π∗s⟩ − Js(πt+1)− bt −
4γτ

1− γ
(84)

≥⟨Qπt(s, ·)−Q∗(s, ·), π∗s⟩+ Js(π
∗)− Js(πt+1)− bt −

4γτ

1− γ
(85)

≥− ∥Qπt(s, ·)−Q∗(s, ·)∥∞ + Js(π
∗)− Js(πt+1)− bt −

4γτ

1− γ
(Hölder’s inequality) (86)

Using the same approach to bound Qπt(s, ·) − Q∗(s, ·), rearrange the above inequality, and set
ct = γ2t+1, we have

∥J(π∗)− J(πt+1)∥∞ ≤ γ ∥J(πt)− J(π
∗)∥∞ + γ2t+1 +

4γτ

1− γ
+ bt (87)

Unravelling the recursion give us

∥J(π∗)− J(πT )∥∞ ≤ γ
T

(
∥J(π∗)− J(π0)∥∞ +

T∑
t=1

γ−tγ2(t−1)+1

)
+

4γτ

1− γ

T−1∑
t=0

γt +

T−1∑
t=0

γtbt

(88)

≤ γT
(
∥J(π∗)− J(π0)∥∞ +

1

1− γ

)
+

4γτ

(1− γ)2
+

T−1∑
t=0

γtbt, (89)

which concludes the proof.

C Empirical Evaluation

Figure 1: Comparison of different policy gradient methods for 3 different number of features d. The
sub-optimality gap is computed as V ∗(ρ)− V πt(ρ) and presented in log scale.

Here, we present some preliminary results to demonstrate the convergence rates of different methods.
We run experiments in the exact update setting on the Cliff World environment of Sutton and Barto
[1998]. This problem has 21 states and 4 actions. We generate the features randomly by sampling from
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a uniform distribution such that Φ ∼ U(0, 1). We compare our proposed projected methods against
the standard PG and NPG methods. All methods share the same features under each experiment. We
run each algorithm for 30,000 iterations with γ = 0.9 and ηt = 1× 10−5.

Figure 1 shows the results of our experiments. The PG method outperforms the projected PG method
in both decreasing the sub-optimality gap and having a faster convergence rate. We can see the
difference in converge rates between the PG and NPG methods. As we increase the number of
features, the difference in performance between these two methods is larger and with d = 64, the
standard PG method reaches the sub-optimality gap achieved by the NPG methods. Across all
experiments, the projected NPG method matches the standard NPG method closely but slightly
outperforms it.

D Computational Complexity Analysis

Because the Moore–Penrose inversion of Φ can be computed just once outside of the scope of the
iterative process, the complexities of our proposed methods are very similar to their counterparts.
This inversion is done in O(d3 + d|S||A|) steps. Multiplying πt+1/2 by this inverse replaces the
multiplication of the tabular gradient by Φ in the PG and NPG methods. Both operations take
O(d|S||A|) steps. Thus, the projection step has a complexity of O(d3 + Td|S||A|).
Assuming that the MDP is known, computing the advantage function Aπt and the state occupancy
measure dπt involvesO(|S|3+ |S|2|A|) steps. Each metric requires the computation of the transition
probabilities Pπt

[s′|s] under the policy πt in O(|S|2|A|) steps, and the inversion of the Neumann
series matrix, which takesO(|S|3) plus a constant amount of matrix-vector multiplications subsumed
by O(|S|2|A|). Computing dπt has the same complexity as Aπt . Thus, the PG and NPG methods
have the same complexity, up to a constant.

These metrics are needed for the functional step, which takes an additional amount of O(d|S||A|)
steps in the form of matrix-vector multiplications needed to compute the logits, policy, and the rest
of the update. This complexity is the same as what is needed to compute tabular gradient (before
including Φ) in the PG and NPG methods. Putting everything together, we have a complexity of:

O
[
d3 + T

(
|S|3 + |S|2|A|+ d|S||A|

)]
, (90)

for both the proposed projected PG and NPG methods, which compared to their counterparts:

O
[
T
(
|S|3 + |S|2|A|+ d|S||A|

)]
, (91)

is only different by a d3 term. The terms |S|3 + |S|2|A| can be replaced depending on the method
used to estimate the advantage function and the state occupancy measure.

E Analysis of policy gradients for the bandit setting

We start an analysis of the policy gradient method in the bandit setting to potentially arrive at a
convergence rate. In similar work, the results obtained for the bandit setting are easily extendable to
MDPs.

Let Φ ∈ Rd×|A| be a feature matrix for each action. Throughout this section, we use the standard
notation of πθ = softmax(z), where z = Φ⊤θ are the logits. In the bandit case, the objective function
reduces to:

max
θ

Ea∼πθ

[
r(a)

]
= max

θ
π⊤
θ r, (92)

with:
∂π⊤

θ r

∂θ
= Φ

[
diag(πθ)− πθ π⊤

θ

]
r = Φ

[
πθ ◦

(
r − π⊤

θ r1
)]
. (93)

E.1 Smoothness

We show that the objective function θ → π⊤
θ r is 5/2∥Φ∥22 smooth. Under different assumptions on

the reward function, a similar result has been shown in Mei et al. [2023] but the L-smooth coefficient
and the proof are different.

14



Let Φi ∈ R|A| be the feature position i across all actions and let S ≜ S(r, θ) ∈ Rd×d be the Hessian
of the objective function, such that:

Si,j = Φ⊤
i

∂[πθ ◦ (r − π⊤
θ r1)]

∂θj
(94)

= Φ⊤
i

[
∂πθ
∂θj
◦ (r − π⊤

θ r1) + πθ ◦
∂[r − π⊤

θ r1]

∂θj

]
(95)

= Φ⊤
i

[
H(πθ) Φj ◦ (r − π⊤

θ r1)− (H(πθ) Φj)
⊤r πθ

]
(96)

= Φ⊤
i

[
H(πθ) Φj ◦ (r − π⊤

θ r1)− Φ⊤
j H(πθ) r πθ

]
(H⊤ = H) (97)

= Φ⊤
i

[
H(πθ) Φj ◦ (r − π⊤

θ r1)− r⊤H(πθ) Φj πθ

]
(u⊤Hv = v⊤Hu) (98)

= Φ⊤
i

[
diag(r)H(πθ)− π⊤

θ rH(πθ)− πθr⊤H(πθ)
]
Φj . (x⊤yz = zx⊤y) (99)

Any operator norm is consistent with the vector norms that induce it. Thus, we have that:

∥Ax∥2 ≤ ∥A∥2∥x∥2. (100)

Moreover, we have the following norm inequalities:

∥x∥∞ ≤ ∥x∥2 ≤ ∥x∥1. (101)

Assuming that r ∈ [0, 1]|A|, we note that ∥π⊤
θ r∥ ≤ 1 and that ∥r⊤H(πθ)∥1 ≤ 1 as shown in Mei

et al. [2020]. Also note that:

∥H(πθ)∥1 = max
1≤j≤m

∥Hi,·(πθ)∥1 ≤ 1/2, (102)

where ∥Hi,·(πθ)∥1 ≤ 1/2 is shown in Mei et al. [2020]. We upper bound the spectral norm of the
Hessian as follows:

|y⊤Sy| (103)

=

∣∣∣∣∣
m∑
i=1

m∑
j=1

yi Si,j yj

∣∣∣∣∣ (104)

=

∣∣∣∣∣
m∑
i=1

m∑
j=1

yi Φ
⊤
i

[
diag(r)H(πθ)− π⊤

θ rH(πθ)− πθr⊤H(πθ)
]
Φj yj

∣∣∣∣∣ (105)

=
∣∣∣y⊤Φ⊤

[
diag(r)H(πθ)− π⊤

θ rH(πθ)− πθr⊤H(πθ)
]
Φ y
∣∣∣ (106)

≤
∥∥y⊤Φ⊤∥∥

∞

∥∥∥[diag(r)H(πθ)− π⊤
θ rH(πθ)− πθr⊤H(πθ)

]
Φ y
∥∥∥
1

(Hölder’s ineq.) (107)

≤
∥∥y⊤Φ⊤∥∥

∞

∥∥diag(r)H(πθ)− π⊤
θ rH(πθ)− πθr⊤H(πθ)

∥∥
2

∥∥Φ y∥∥
2

(Eq. 100) (108)

≤
∥∥y⊤Φ⊤∥∥

2

∥∥diag(r)H(πθ)− π⊤
θ rH(πθ)− πθr⊤H(πθ)

∥∥
1

∥∥Φ y∥∥
2

(Eq. 101) (109)

≤ ∥Φ∥22 ∥y∥22
∥∥diag(r)H(πθ)− π⊤

θ rH(πθ)− πθr⊤H(πθ)
∥∥
1

(Cauchy ineq.) (110)

≤ ∥Φ∥22 ∥y∥22
[
∥diag(r)H(πθ)∥1 + ∥π⊤

θ rH(πθ)∥1 + ∥πθr⊤H(πθ)∥1
]

(triangle ineq.) (111)

≤ ∥Φ∥22 ∥y∥22
[
∥r⊤H(πθ)∥1 + |π⊤

θ r| ∥H(πθ)∥1 + ∥πθ∥∞∥r⊤H(πθ)∥1
]

(112)

≤ ∥Φ∥22 ∥y∥22 [1 + 1/2 + 1] (Eq. 102) (113)

= 5/2 ∥Φ∥22 ∥y∥22. (114)

Thus, using Taylor’s theorem, we have that:∣∣∣∣∣(πθt+1
− πθt

)⊤
r −

〈
∂π⊤

θt
r

∂θt

∣∣∣∣∣θt+1 − θt

〉∣∣∣∣∣ ≤ 5

4
∥Φ∥22∥θt+1 − θt∥22. (115)
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Figure 2: Absolute gradient across different parameter values θ, for a single feature vector ϕ, under
different settings. Policies with π(a∗) > 0.01 are removed from the plot to highlight the optimal
solution from a feasible set that does not consider such policies. The blue line corresponds to a a
setting in which the optimal solution is deterministic. The orange line corresponds to a setting in
which the optimal solution is a uniform distribution across all actions with θ = 0. The green and red
lines correspond to non-deterministic policies.

E.2 Gradient dominance

We show that the gradient norm is non-zero for all non-optimal feasible policies that are non-
deterministic. Let w(π) = π ⊙ (r − π⊤r) such that:

∂π⊤
θ r

∂θ
= Φ

[
πθ ⊙ (r − π⊤

θ r)
]
= Φw(πθ). (116)

Deterministic policies have w(π)i = 0∀i ∈ {1, ..., |A|}. Let π† be a deterministic policy such that
π†
i = 1, π†

j ̸=i = 0. We have that:

π†
i = 1, π†

j ̸=i = 0 =⇒ w(π)i = π†
i ri − π

†
iπ

†⊤r = π†
i ri − ri = ri − ri = 0 (117)

π†
i = 1, π†

j ̸=i = 0 =⇒ w(π)j = π†
jrj − π

†
jπ

†⊤r = 0− 0 = 0. (118)

As a result Φπ† = 0. Thus, for gradient dominance and the PL condition to hold, we need to exclude
non-optimal deterministic policies from the feasible set. We assume that Π is formed such that
π(a∗) > 0 ∀π ∈ Π; a∗ = argmaxa π

∗(a) = 1, where π∗ = argmaxπ∈∆(|A|) π
⊤r is any optimal

policy.

If any of the optimal feasible policies π̂ = argmaxπ∈Π π⊤r are non-deterministic, then we must
have that:

Φw(π̂) = 0. (119)

If π̂ is non-deterministic and non-optimal in the sense that π̂⊤r < π∗⊤r, then ∃i : w(π̂)i ̸= 0. We
show this as follows. The optimal feasible policies have π̂(a∗) ≥ 1/|A|, with equality when θ = 0
produces logits Φθ = 0, and since exp(0) = 1, we have after the softmax that π̂ = 1/|A|. For a policy
to be non-deterministic and non-optimal with respect to ∆(|A|) as described, it must have probability
δ ∈ (0, 1) on non-optimal actions with reward r(a∗)− ϵ; ϵ ∈ (0, r(a∗)]. Thus, we have that:

π̂⊤r < π∗⊤r =⇒ ∃i : π̂i
[
ri − π̂⊤r

]
(120)

= δ
[
(r(a∗)− ϵ)−

[
δ (r(a∗)− ϵ) + (1− δ) r(a∗)

]]
(121)

= δ
[
− ϵ+ δ ϵ

]
< 0. (122)
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Hence, since a non-deterministic optimal and feasible policy has a non-zero w(π̂) and because its
gradient must be zero, then we must have that:

π̂⊤r < π∗⊤r =⇒ w(π̂) ∈ kerΦ, (123)

where kerΦ is the nullspace or kernel of Φ.

We now show that non-optimal policies are not in the nullspace of Φ. First we show that
∑
i w(π)i =

0 for any policy as follows:∑
i

w(π)i =
∑
i

πi

(
ri −

∑
j

πjrj

)
=
∑
i

πi ri −
∑
j

πjrj
∑
i

πi (124)

=
∑
i

πi ri −
∑
j

πjrj = 0. (125)

There can be an infinite amount of vectors w in the nullspace of Φ. However, once we consider the
constraint

∑
i w(π)i = 0, only scaled versions of an optimal feasible policy vector ŵ = w(π̂) =

π̂⊙ (r− π̂⊤r) are in the nullspace. We prove this as follows. Without loss of generality, we focus on
a single row ϕ ∈ Φ. The constraints ϕ⊤w = 0 and

∑
i w(π)i = 0 defines the following system:

ϕ1w1(π) + · · ·+ ϕ|A|w|A|(π) = 0 (126)

w1(π) + · · ·+ w|A|(π) = 0. (127)

This is an underdetermined system for |A| > 2. When the system is consistent, it has an infinitude of
solutions. Subtracting both equations and solving for one variable, we obtain:

(ϕ1 − 1)w1(π) + · · ·+ (ϕ|A| − 1)w|A|(π) = 0 (128)

=⇒ wi(π) =
1

(1− ϕi)
∑
i ̸=j

(ϕj − 1)wj(π). (129)

Solving for any wi(π)∀i ∈ {1, ..., |A|} results in a linear equation with no constant term so that
it only depends on the other variables. Given a solution ŵ, when scaling a variable ŵi by λ, the
other variables must also scale by λ to satisfy the constraints. Thus, the system has infinite solutions
corresponding to λŵ ∀λ ∈ R.

We show now that w(π) ̸= λŵ ∀π ∈ Π : π ̸= π̂. Thus, optimal feasible policies are the only policies
with a corresponding w(π̂) ∈ kerΦ and therefore only their gradients can be zero. We split the
analysis into two cases, one with optimal feasible policies with non-zero probability in more than 2
actions such that

∑
i I{π̂i ̸= 0} > 2 and the other with the converse, such that

∑
i I{π̂i ̸= 0} = 2.

For
∑
i I{π̂i ̸= 0} > 2, note that:

ŵ = λw(π) =⇒ π̂ ⊙ (r − π̂⊤r) = λπ ⊙ (r − π⊤r) (130)

=⇒ (diag(π̂)− π̂π̂⊤) r = λ(diag(π)− ππ⊤) r (131)
=⇒ H(π̂) = λH(π). (132)

We focus on the diagonal where Hi,i(π) = πi − π2
i . This is a quadratic concave function with a

maximum of 1/4 at πi = 1/2. The domain of this function is [0, 1] and the image is [0, 1/4]. The
derivative is given as:

dHi,i(π)

dπi
= 1− 2πi. (133)

Note that the derivative for any point πi has different magnitude, except at point 1− πi. As we scale
Hi,i(π) by λ ̸= 0, all other points Hj,j(π) : i ̸= j must scale at the same rate, to satisfy:

Hi,i(π̂)

Hi,i(π)
=
Hj,j(π̂)

Hj,j(π)
=⇒ π̂i(1− π̂i)

πi(1− πi)
=
π̂j(1− π̂j)
πj(1− πj)

=⇒ π̂i(1− π̂i)
π̂j(1− π̂j)

=
πi(1− πi)
πj(1− πj)

. (134)

If we set π̂j = (1 − π̂i) we can find another policy π that satisfies this constraint. However
this will mean that only two actions have all the probability mass. Under the assumption that∑
i I{π̂i ̸= 0} > 2, we cannot find another policy that satisfies Eq. (134). Because the derivative
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magnitude is only the same at points πi and 1 − πi, the underlying probabilities will change at a
different rate when scaling H(π), breaking the constraint that they must sum to 1. Hence, there are
no other policies that can produce λŵ when

∑
i I{π̂i ̸= 0} > 2.

For policies in which
∑
i I{π̂i ̸= 0} = 2, there are an infinite amount of policies such that

H(π̂) = λH(π) for λ ∈ Λ ⊂ R. However, from this set of policies, we have that all the feasible
ones are optimal. We divide the analysis in two cases based on whether the rewards for the two
actions with non-zero probabilities are the same or different. When the rewards are the same
they also are the highest rewards such that r(a1) = r(a2) = r(a∗), because policies with zero
probability on the best action are not in the feasible set as per our constraint. Thus, we have that
w(π) = 0∀π ∈ ∆(|A|) : π1 = (1− π2):

π2 = (1− π1), r1 = r2 =⇒ π⊤r = π1r1 + π2r2 = π1r1 + (1− π1) r2 = r2 = r1 (135)

=⇒ w(π)1 = π1(r1 − π⊤r) = π1(r1 − r1) = 0 (136)

=⇒ w(π)2 = π2(r2 − π⊤r) = π2(r2 − r2) = 0 (137)

=⇒ w(π)j /∈{1,2} = πj(rj − π⊤r) = 0 · (rj − π⊤r) = 0. (138)

All these policies are optimal and produce the zero vector for w(π), which is in the nullspace of Φ. If
the rewards are not the same then if the optimal feasible solution π̂ in non-deterministic, we have that
w(π̂)1 = −w(π̂)2, w(π̂)j /∈{1,2} = 0:

π2 = (1− π1), π1, π2 > 0, r1 ̸= r2 (139)

=⇒ π⊤r = π1r1 + π2r2 = π1(r1 − r2) + r2 (140)
=⇒ w(π)1 = π1(r1 − π1(r1 − r2)− r2) = π1(1− π1)(r1 − r2) ̸= 0 (π1, π2 > 0) (141)

=⇒ w(π)j /∈{1,2} = πj(rj − π⊤r) = 0 · (rj − π⊤r) = 0 (142)

=⇒ w(π)2 = −π1(r1 − π1(r1 − r2)− r2) ̸= 0.
(∑

i wi = 0
)

(143)

Since w(π) ̸= 0, for it to be in the nullspace of Φ, we must have that ϕ1 = ϕ2 ∀ϕ ∈ Φ. If the features
are the same, then the only feasible policy that can be produced is one in which π1 = π2, and it
would be the optimal feasible policy π̂. Otherwise the best feasible policy would be deterministic and
it would produce w(π̂) = 0. Thus, when

∑
i I{π̂i ̸= 0} = 2, all feasible policies are optimal. This

concludes our proof, showing that:∥∥∥∥dπ⊤
θ r

dθ

∥∥∥∥ > 0 ∀πθ ∈ Π : πθ(a
∗) > 0 ∧ πθ ̸= π̂θ. (144)

Figure 2 shows a plot of the gradient under different settings to demonstrate the gradient dominance.

E.3 Non-uniform Łojasiewicz condition

We start an analysis that can potentially arrive at the PL condition:∥∥∥∥∂π⊤
θ r

∂θ

∥∥∥∥2
2

=
∥∥Φ[πθ ⊙ (r − π⊤

θ r
)]∥∥2

2
(145)

≥
∣∣ϕ⊤[πθ ⊙ (r − π⊤

θ r
)]∣∣ (ϕ ∈ Φ) (146)

=
∣∣ϕ⊤[πθ ⊙ (r − π⊤

θ r + π̂⊤
θ r − π̂⊤

θ r
)]∣∣ (147)

=
∣∣ϕ⊤[πθ ⊙ (π̂⊤

θ r − π⊤
θ r
)
+ πθ ⊙

(
r − π̂⊤

θ r
)]∣∣ (148)

=
∣∣∣ϕ⊤πθ(π̂θ − πθ)⊤r + ϕ⊤

[
πθ ⊙

(
r − π̂⊤

θ r
)]∣∣∣. (149)

We notice that the first term in Eq. (149) goes to zero as πθ → π̂θ. The scaling factor is ϕ⊤πθ. For
the second term, when πθ = π̂θ, we recover the expression that we analyzed in the previous gradient
dominance section, where we have shown that the resulting w(π̂θ) is in the nullspace of ϕ and the
entire term is zero.
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